Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andreas Fischer

Inorganic Chemistry, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), 10044 Stockholm, Sweden

Correspondence e-mail: andif@inorg.kth.se

Key indicators

Single-crystal X-ray study
$T=250 \mathrm{~K}$
Mean $\sigma(\mathrm{l}-\mathrm{O})=0.005 \AA$
R factor $=0.046$
$w R$ factor $=0.114$
Data-to-parameter ratio $=16.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Hexaaquairon(III) perchlorate trihydrate

A single crystal of commercially available 'iron(III) perchlorate hexahydrate' has been structurally characterized and shown to be hexaaquairon(III) tris(perchlorate) trihydrate, $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. The structure contains $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ complex ions, charge-balancing perchlorate ions and three water molecules of crystallization per Fe atom. A network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds helps to stabilize the crystal packing. Fe, Cl and one water O atom occupy special positions with site symmetries $\overline{3}, 2$, and 2 , respectively.

Comment

Surprisingly, the structures of some simple metal perchlorate hydrates have not yet been determined. One of these compounds is iron(III) perchlorate. Commercial 'iron(III) perchlorate hexahydrate' (AlfaAesar) consisted of single crystals of a quality sufficient for a structure determination, which showed its composition really to be hexaaquairon(III) perchlorate trihydrate, (I).

Compound (I) crystallizes in the trigonal system, space group $R \overline{3} \mathrm{c}$, with the Fe atom on Wyckoff position $6 b$ (Fig. 1). Fe1 (site symmetry $\overline{3}$) is coordinated by water molecules with the O atom on position $18 f$, thus yielding an essentially regular octahedral coordination by six crystallographically equivalent water molecules $[\mathrm{Fe} 1-\mathrm{O} 1=1.988$ (2) \AA]. The Cl atom lies on Wyckoff position $18 e$ (site symmetry 2) with a tetrahedral coordination by two pairs of equivalent O atoms. The water

Figure 1
The structural units in the title compound. Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms). [Symmetry codes: (i) $x-y, x,-z$; (ii) $-y, x-y, z$; (iii) $-x,-y,-z$; (iv) $-x+y,-x, z$; (v) $y,-x+y,-z$; (vi) $\frac{1}{3}+x-y, \frac{2}{3}-y, \frac{1}{6}-z$.]

Figure 2
A packing diagram of (I), in a view along c. Key: blue polyhedra $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$, green polyhedra ClO_{4}^{-}, and large red spheres $\mathrm{H}_{2} \mathrm{O}$.

Figure 3
The hydrogen-bonding (dashed lines) pattern in (I). [Symmetry codes: (i) $y, x, \frac{1}{2}-z$; (ii) $\frac{2}{3}-x, \frac{1}{3}-y, \frac{1}{3}-z$; (iii) $\frac{1}{3}-x+y,-\frac{1}{3}+y, \frac{1}{6}+z$; (iv) $-x+y,-x$, z; (v) $x-y,-y, \frac{1}{2}-z$.]
molecule of crystallization lies on position $18 e$ (site symmetry 2) yielding a total number of nine water molecules per Fe^{3+}. A network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) stabilizes the crystal packing (Figs. 2 and 3).

Only a few perchlorate hydrates of M^{3+} metal ions have been structurally characterized, the lanthanides being by far the biggest group. Six-coordinate $\left[\mathrm{Ln}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ complex ions are uncommon, but one series of exceptions is the perchlorate hexahydrates of $\mathrm{La}, \mathrm{Tb}, \mathrm{Er}$ and Tl (Glaser \& Johansson, 1981). In these structures, however, no additional water molecules of crystallization are present.

Experimental

A single crystal of commercial iron(III) perchlorate 'hexahydrate' (AlfaAesar, Reagent grade) was used without further treatment. Owing to its sensitivity towards water, the selected crystal was cooled to 250 K during the data collection.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=516.33$
Trigonal, $R \overline{3} c$
$a=16.047$ (2) \AA
$c=11.3561$ (13) A
$V=2532.5(5) \AA^{3}$
$Z=6$
$D_{x}=2.031 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker-Nonius KappaCCD
diffractometer
φ and ω scans
Absorption correction: none
8799 measured reflections 652 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0447 P)^{2}\right. \\
& +20.7174 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\max }=0.68 \mathrm{e} \mathrm{~A}^{-3} \\
& \Delta \rho_{\text {min }}=-0.43 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O4-H4 $\cdots \mathrm{O}^{\text {i }}$	0.97	1.97	$2.745(4)$	136
O4-H4 $^{\text {ii }} \cdots 3^{3}$	0.97	2.36	$3.052(3)$	128
O1-H1A \cdots O3	0.87	1.91	$2.775(4)$	172
O1-H1B \cdots O4	0.82	1.82	$2.632(2)$	173

Symmetry codes: (i) $y, x,-z+\frac{1}{2}$; (ii) $-x+\frac{2}{3},-y+\frac{1}{3},-z+\frac{1}{3}$.
H atoms were located in a difference map and refined in their asfound positions using a riding model, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (carrier).

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2003); data reduction: EVALCCD (Duisenberg, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: maXus (Mackay et al., 1999).

The Swedish Research Council (VR) is acknowledged for funding of the single-crystal diffractometer.

References

Brandenburg, K. (2005). DIAMOND. Release 3.1. Crystal Impact GbR, Bonn, Germany.
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.

Glaser, J. \& Johansson, G. (1981). Acta Chem. Scand. Ser. A, 35, 639-644.
Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. \& Shankland, K. (1999). maXus. Bruker-Nonius, The Netherlands, MacScience, Japan, and The University of Glasgow, Scotland.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

